The Little-Endian OpenPOWER Software Development Environment

Dr. Michael Gschwind
Senior Technical Staff Member & Senior Manager
IBM Power Systems

OpenPOWER Summit 2015
San Jose, CA | March 17-19
OpenPOWER ecosystem

- Enable rich ecosystem of hardware vendors
 - Standardized hardware interfaces
 - Common, open firmware interfaces

- Open source system software stack
 - Data center operators rely on tuning SW stack
 - Enable server ODM vendors to create offerings
 - Operating environment built on Linux and KVM

Join the conversation at #OpenPOWERSummit
A New OpenPOWER Linux Environment

- OpenPOWER is not traditional Power Linux with a new name
 - Significant discontinuity and fresh start
 - new environment “ppc64le”
 - Firmware, Hypervisor, data layout, source code, ABI, APIs

- What changes for application developers?
 - Byte order
 - New ABI
 - Vector programming API

Join the conversation at #OpenPOWERSummit
The New Byte Order

- Little-endian data format and programming interfaces
 - Simplify porting of applications previously locked to Intel x86
 - Large-scale data center applications
 - Application source code dependences
 - Access data repositories storing binary data written by Intel x86
 - In-storage data base formats
 - Data sharing with mobile devices
 - Simplify data sharing with I/O devices originally from LE ecosystems
 - Easily exploit I/O and accelerators designed for PCs and mobile devices

Join the conversation at #OpenPOWERSummit
The New OpenPOWER Application Binary Interface (ABI)

- Optimizations driven by hardware and software evolution
 - Align with the broader ecosystem
 - Create hardware optimization opportunities and synergies

- Optimize for modern code patterns
 - More classes, abstraction
 - Shorter function lengths
 - More indirect calls

- New capabilities as delta over starting point: PPC64 / AIX ABI
 - Established, tested production code
 - Commonality and maintenance across LE, BE and AIX where feasible
 - Minimum disruption for tooling: GCC, XL, Java, LLVM, libffi, PyPy, ...

Join the conversation at #OpenPOWERSummit
The new ABI

- Application development: no change
 - for applications written in Fortran, Pascal, C, C++, C#, Java, Python, Ruby, Spark
 - minimal change (0-4 lines) for assembly programs

- Align with other Linux environments to simplify migration

- Simpler and shorter code

- Improved performance and ease of adoption
 - During initial LE Linux bringup, 40,000 packages ported over short period

Join the conversation at #OpenPOWERSummit
ABI Improvements: simplify and accelerate

- Global data management with the Global Offset Table
 - Initialize pointer to GOT without functions descriptors
 - Optimize GOT pointer update on cross-module calls
 - Expand addressing range with “Medium Code Model”
 - Exploit Displacement Fusion and avoid GOT overflow code

- Pass more registers in their native registers
 - Reduce abstraction penalty (“same performance as builtin types”)
 - OO languages wrap types in abstract class
 - Previously classes handled differently from builtin types
 - ELFv2 passes up to eight class members in registers
 - Return function results in same register(s) as first input parameter

Join the conversation at #OpenPOWERSummit
Medium Code Model

- “Medium code model” addresses growing application size
 - Expand GOT data dictionary to up to 4GB

- Avoid expensive GOT overflow > 64KB (8k variables) per module
 - Size originally set to POWER ISA offset size (16b)

- Enable applications with up to 500M variables per module
 - “Beyond RISC” using Displacement Fusion in Power8

Join the conversation at #OpenPOWERSummit
Beyond RISC: Displacement Fusion

- Combine multiple instructions into single internal instruction
- Compound instruction executes as a single hardware operation
- Increased addressing range with RISC fixed-width instr. advantage

```plaintext
addis r3=r2, D1@ha
ld    r3=r3, D1@l
```

Displacement fusion

```
ld    r3= r2, D1
```

Join the conversation at #OpenPOWERSummit
Example OO method with abstract data types

- **Work instructions in green**
- **Overhead due to passing abstract data types via memory in red**

Join the conversation at #OpenPOWERSummit
The Little-Endian Vector API

- Vector API builds on OpenPOWER Little-Endian Data Model
 - Focus on programmability – consistent little-endian view
 - Focus on ease of sharing code with other little-endian ecosystems

Join the conversation at #OpenPOWERSummit
Little-Endian Vector API Implementation

- Common Vector Programming API across GCC, LLVM and XL
 - Vector builtins as operators
 - Enable compilers to optimize expressions with vector operators

- Vector API code models are programmer abstractions
 - Common LE/BE compiler backend...
 - ... recognizes and optimizes the different conventions

$$f^{-1}(s(f(x), f(y)))) \Leftrightarrow s(x,y)$$

Technical details:
- “Supporting Vector Programming on a Bi-Endian Processor Architecture”, LLVM 2014

Join the conversation at #OpenPOWERSummit
OpenPOWER Environment available now

- Collaborative innovation already changing industry
 - Major data center stakeholders joining OpenPOWER
 - Little-endian Linux on Power available from three major distros
 - Over 40000 open source packages and ISV applications ported

- Redefined software stack: Firmware, Hypervisors, OS, Applications
 - Little-endian data model for simplified application porting
 - New ABIs and APIs support developers in exploiting platform

- New OpenPOWER environment enables
 - Ease-of-use and out-of-box performance
 - Exploitation of new Power8 hardware features

Join the conversation at #OpenPOWERSummit
#OpenPOWERSummit

Join the conversation at #OpenPOWERSummit
Special Notices

This document was developed for IBM offerings in the United States as of the date of publication. IBM may not make these offerings available in other countries, and the information is subject to change without notice. Consult your local IBM business contact for information on the IBM offerings available in your area.

Information in this document concerning non-IBM products was obtained from the suppliers of these products or other public sources. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

IBM may have patents or pending patent applications covering subject matter in this document. The furnishing of this document does not give you any license to these patents. Send license inquiries, in writing, to IBM Director of Licensing, IBM Corporation, New Castle Drive, Armonk, NY 10504-1785 USA.

All statements regarding IBM future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only. The information contained in this document has not been submitted to any formal IBM test and is provided "AS IS" with no warranties or guarantees either expressed or implied.

All examples cited or described in this document are presented as illustrations of the manner in which some IBM products can be used and the results that may be achieved. Actual environmental costs and performance characteristics will vary depending on individual client configurations and conditions.

IBM Global Financing offerings are provided through IBM Credit Corporation in the United States and other IBM subsidiaries and divisions worldwide to qualified commercial and government clients. Rates are based on a client’s credit rating, financing terms, offering type, equipment type and options, and may vary by country. Other restrictions may apply. Rates and offerings are subject to change, extension or withdrawal without notice.

IBM is not responsible for printing errors in this document that result in pricing or information inaccuracies.

IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply. Any performance data contained in this document was determined in a controlled environment. Actual results may vary significantly and are dependent on many factors including system hardware configuration and software design and configuration. Some measurements quoted in this document may have been made on development-level systems. There is no guarantee these measurements will be the same on generally-available systems. Some measurements quoted in this document may have been estimated through extrapolation. Users of this document should verify the applicable data for their specific environment.
A full list of U.S. trademarks owned by IBM may be found at: http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

AltiVec is a trademark of Freescale Semiconductor, Inc.

AMD Opteron is a trademark of Advanced Micro Devices, Inc.

InfiniBand, InfiniBand Trade Association and the InfiniBand design marks are trademarks and/or service marks of the InfiniBand Trade Association.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

IT Infrastructure Library is a registered trademark of the Central Computer and Telecommunications Agency which is now part of the Office of Government Commerce.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its affiliates.

Linear Tape-Open, LTO, the LTO Logo, Ultrium, and the Ultrium logo are trademarks of HP, IBM Corp. and Quantum in the U.S. and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries or both.

PowerLinux™ uses the registered trademark Linux® pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the Linux® mark on a world-wide basis.

Microsoft, Windows and the Windows logo are registered trademarks of Microsoft Corporation in the United States, other countries or both.

NetBench is a registered trademark of Ziff Davis Media in the United States, other countries or both.

SPECint, SPECfp, SPECjbb, SPECweb, SPECjAppServer, SPEC OMP, SPECviewperf, SPECcpu, SPECjc, SPECjvm, SPECmail, SPECimap and SPECsfs are trademarks of the Standard Performance Evaluation Corp (SPEC).

The Power Architecture and Power.org wordmarks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org.

TPC-C and TPC-H are trademarks of the Transaction Performance Processing Council (TPPC).

UNIX is a registered trademark of The Open Group in the United States, other countries or both.

Other company, product and service names may be trademarks or service marks of others.